Irreducible Radical Extensions and Euler-function Chains

نویسندگان

  • Florian Luca
  • Carl Pomerance
چکیده

We discuss the smallest algebraic number field which contains the nth roots of unity and which may be reached from the rational field Q by a sequence of irreducible, radical, Galois extensions. The degree D(n) of this field over Q is φ(m), where m is the smallest multiple of n divisible by each prime factor of φ(m). The prime factors of m/n are precisely the primes not dividing n but which do divide some number in the “Euler chain” φ(n),φ(φ(n)), . . . . For each fixed k, we show that D(n) > n on a set of asymptotic density 1. –For Ron Graham on his 70th birthday

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rate of Rényi Entropy for Irreducible Markov Chains

In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory

A generating function is given for the number, E(l, k), of irreducible kfold Euler sums, with all possible alternations of sign, and exponents summing to l. Its form is remarkably simple: ∑ n E(k + 2n, k) x n = ∑ d|k μ(d) (1 − x)/k, where μ is the Möbius function. Equivalently, the size of the search space in which k-fold Euler sums of level l are reducible to rational linear combinations of ir...

متن کامل

1 F eb 1 99 7 REAL FIELDS AND REPEATED RADICAL EXTENSIONS

1. Introduction. Recall that a field extension F ⊆ L is said to be a radical extension if it is possible to write L = F [α], where α ∈ L is an element with α n ∈ F for some positive integer n. More generally, an extension F ⊆ L is a repeated radical extension if there exist intermediate fields L i with F = L 0 ⊆ L 1 ⊆ · · · ⊆ L r = L and such that each field L i is a radical extension of L i−1 ...

متن کامل

Gaps in Binary Expansions of Some Arithmetic Functions, and the Irrationality of the Euler Constant

We show that if Fn = 2 2 +1 is the nth Fermat number, then the binary digit sum of π(Fn) tends to infinity with n, where π(x) is the counting function of the primes p ≤ x. We also show that if Fn is not prime, then the binary expansion of φ(Fn) starts with a long string of 1’s, where φ is the Euler function. We also consider the binary expansion of the counting function of irreducible monic pol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007